skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Diroll, Benjamin_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tuning the properties of a pair of entangled electron and hole in a light-induced exciton is a fundamentally intriguing inquiry for quantum science. Here, using semiconducting hybrid perovskite as an exploratory platform, we discover that Nd2+-doped CH3NH3PbI3(MAPbI3) perovskite exhibits a Kondo-like exciton-spin interaction under cryogenic and photoexcitation conditions. The feedback to such interaction between excitons in perovskite and the localized spins in Nd2+is observed as notably prolonged carrier lifetimes measured by time-resolved photoluminescence, ~10 times to that of pristine MAPbI3without Nd2+dopant. From a mechanistic standpoint, such extended charge separation states are the consequence of the trap state enabled by the antiferromagnetic exchange interaction between the light-induced exciton and the localized 4 fspins of the Nd2+in the proximity. Importantly, this Kondo-like exciton-spin interaction can be modulated by either increasing Nd2+doping concentration that enhances the coupling between the exciton and Nd2+4 fspins as evidenced by elongated carrier lifetime, or by using an external magnetic field that can nullify the spin-dependent exchange interaction therein due to the unified orientations of Nd2+spin angular momentum, thereby leading to exciton recombination at the dynamics comparable to pristine MAPbI3
    more » « less
  2. Abstract Above‐equilibrium “hot”‐carrier generation in metals is a promising route to convert photons into electrical charge for efficient near‐infrared optoelectronics. However, metals that offer both hot‐carrier generation in the near‐infrared and sufficient carrier lifetimes remain elusive. Alloys can offer emergent properties and new design strategies compared to pure metals. Here, it is shown that a noble‐transition alloy, AuxPd1−x, outperforms its constituent metals concerning generation and lifetime of hot carriers when excited in the near‐infrared. At optical fiber wavelengths (e.g., 1550 nm), Au50Pd50provides a 20‐fold increase in the number of ≈0.8 eV hot holes, compared to Au, and a threefold increase in the carrier lifetime, compared to Pd. The discovery that noble‐transition alloys can excel at hot‐carrier generation reveals a new material platform for near‐infrared optoelectronic devices. 
    more » « less